CUDARHREIATEF BT

2013FK- A1l Hr L ¥R

| ec 3 CUDA Software
Abstraction

Tonghua Su
School of Software
Harbin Institute of Technology

O
@
&)
@
®
©

Outline

Review Lecl & 2
Multithreading

CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

O
@
&)
@
®
©

Outline

Review Lecl & 2
Multithreading

CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

&

CUDARREIHATIE P it

060060

® Hello CUDA: Vector Sum X
-_global_ addKernel(int * const a, const int * conet h ranct int * ronct |l i l l l l l
{ £EID, FNZSISETE

const unsigned int i = threadldx.x; ‘

e | alal o 1] I

1 void main(){

int *dev_a,*dev_b,*dev_c;
// Allocate GPU buffers for three vectors (two input, one output) . AT
cudaMalloc((void**)&dev_c, 128* sizeof(int));

// Copy input vectors from host memory to GPU buffers.

cudaMemcpy(dev_a, a, 128* sizeof(int), cudaMemcpyHostToDevice); ﬁﬁMGipﬁbﬁ%@J
cudaMemcpy(dev_b, b, 128* sizeof(int), cudaMemcpyHostToDevice), |
// Launch a kernel on the GPU with one thread for each element. WH AR
addKernel<<<l, 128>>>(dev_c, dev_a, dev_Db);

I
// Copy output vector from GPU buffer to host memory. 9 MGPUR Hi[E]
cudaMemcpy(c, dev_c, 128* sizeof(int), cudaMemcpyDeviceToHos); : EAl
cudaFree(dev_c); B EAE

‘ CUDAR B8 TR Bt

Review

CPU

p
Execute parallel
in each core

(GeForce 8800)

Processing flow
on GUDA

Tonghua Su, School of Softwar>r==re=s

3.5gy, China

&

Review

® Amdahl’s Law

Speedup =

Amdahl, Gene (1967). “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities™.
AFIPS Conference Proceedings (30): 483—485.

Tonghua Su, School of Software, Harbin Institute of Technology, China

Review

® Single GPU Configuration

| -

" PCI
1 Express .) S Express
“Northbridge” 2P GPU Northbridge | EXPress | apU

Front-side bus

NS %
GPU memory I GPU memo
CPU memory I CPU memory Y

CPU CPU CPU CPU
memory memory memory memory
< : | C ac
CPU CPU QP
~ HT/QPI HT/QPI| |
) . QPI opﬂ
Express. PCle - PCle;.
/O Hub ST GPU GPU I/_ 0 1/0 Hub /O Hub lj_ " GPU

GPU
Tonght memory (ol of Software,

e of Technology, China

Review

® Multiple GPU Configuration cPU l
PCI ‘

cPU I ‘ 4

] Express N
) .) : : l/ GPU
bel Northbridge
“Northbridge” | Express - | ;
, | Discrete GPU(s) | N GPU
e o ||)
CPU and GPU
memaory CPU memory
CPU
ExP?e:ss Al
“Northbridge” ihitd N\ Bridge Chip

CPU memory

[

of Software, Harbin Institute of Technology, China

CUDAR HREFHATEF Bt

‘ -
Kepler GPU Architecture SOOOOCOOOOON
OOOOO0O00O00O000O00
OOoOOoOooOooooo
OOOoOoooooooo
OO0OOO00O0000O000O00
OOOOOo0oooooo
OOoO0oOoooooooo
OOOOOooooooo
OOoOOOoooooooo
OOOOO0O00O00O000O00
OO0OO0O0o0ooooo
OOOOOoooooooo
OO0OOO00O0000O000O00
OOOOOo0oooooo

SMX SMX SMX SMX

L2 cache \
OOoOO0O0000oddg

\ OooOoOooooooon

SMX SMX SMX | | SMX \\\\\\\ L1 cache /

shared memory

Tonghua Su, School of Software, Harbin Institute of Technology, China

&

Review

® Kepler GPU Architecture

® building block is a “streaming multiprocessor” (SMX):
v 192 cores and 64k registers
v' 64KB of shared memory / L1 cache
v 8KB cache for constants
v' 48KB texture cache for read-only arrays
v up to 2K threads per SMX

Tonghua Su, School of Software, Harbin Institute of Technology, China

® Fermi GPU Architecture

CUDAR HREFHATEF Bt

/

SM SM SM SM SM SM SM
\

|2 cache \

sm| [sm]| Ism]| |sm| [sm]| [sm]| [swm

OIHOIOOIOI Ol Ol O
oll oll oll O O] O O ©
ollolloll O O O] O O
oll oll oll O O Of O ©

L1 cache/
shared memory

Tonghua Su, School of Software, Harbin Institute of Technology, China

»

Review

® Fermi GPU Architecture

® older Fermi GPU has SM “streaming multiprocessor”:

v' 32 cores and 32K registers

v' 64KB of shared memory / L1 cache
v" 8KB cache for constants

v up to 1536 threads per SM

Tonghua Su, School of Software, Harbin Institute of Technology, China

O
@
&)
@
®
©

Outline

Review Lecl & 2
Multithreading

CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

D CUDARGH: EIFAT AL i it
Multithreading

® Key hardware feature is that the cores in an SMX are SIMT
(Single Instruction Multiple Threads) cores:

v" all cores execute the same instructions simultaneously, but with different
data

v similar to vector computing on CRAY supercomputers

v minimum of 32 threads all doing the same thing at (almost) the same time
v" natural for graphics processing and much scientific computing

v SIMT is also a natural choice for many-core chips to simplify each core

Tonghua Su, School of Software, Harbin Institute of Technology, China

@) CUDARGH: EIFAT AL i it
Multithreading

@® | ots of active threads is the key to high performance:
v no “context switching”: each thread has its own registers (which limits the
number of active threads)

v’ threads on each SMX execute in groups of 32 called “warps” — execution
alternates between “active” warps, with warps becoming temporarily
“Inactive” when waiting for data

Tonghua Su, School of Software, Harbin Institute of Technology, China

D CUDARHE EIATRF B

® for each thread, one operation completes long before the next
starts — avoids the complexity of pipeline overlaps which can limit
the performance of modern processors

—31]2[3]4]5}— time

® memory access from device memory has a delay of 400-600
cycles; with 40 threads this is equivalent to 10-15 operations, so
hopefully there’s enough computation to hide the latency

Tonghua Su, School of Software, Harbin Institute of Technology, China

O
@
&)
@
®
©

Outline

Review Lecl & 2
Multithreading

CUDA Abstraction
Warp Scheduling

Lab 2

Software Layers in CUDA

D CUDARH REIATRFF Bt
CUDA

® CUDA (Compute Unified Device Architecture) is NVIDIA's
program development environment:
v based on C with some extensions
v’ extensive C++ support

v FORTRAN support provided by PGI compiles lots of example code and
good documentation

v 2-4 week learning curve for those with experience of OpenMP and MPI
programming

v' large user community on NVIDIA forums

Tonghua Su, School of Software, Harbin Institute of Technology, China

QD CUDARHE EIATRF B

® CUDA virtualizes the physical hardware

v’ thread is a virtualized scalar processor (registers, PC, state)

v" block is a virtualized multiprocessor (threads, shared mem.)
® Scheduled onto physical hardware without pre-emption

v" threads/blocks launch & run to completion/suspension
v" blocks should be independent

Tonghua Su, School of Software, Harbin Institute of Technology, China

@ CUDARH REIATRFF Bt
CUDA Abstraction

® Key Parallel Abstractions in CUDA
v" Hierarchy of concurrent threads
v Shared memory model for cooperating threads
v Lightweight synchronization primitives

- Block 1 Warps — Block 2 Warps — Block 1 Warps
[] L] I LI I L) I
tOtlt2 ... t31 tOtl t2 ... t31 tOtl t2 ... t31
\\\\Eﬁ\t\t) ANNNNNNNNNNY \\\\\\\\\\5
¢) P P
p 4 (e >4 9
T > | S > o >

Streaming Multiprocessor

Instruction Fetch/Dispatch

Shared Memory

S P

S P

SFU SFU

S P

Tonghua Su, o'c!ooi oi !ol(ware, Harbin |nj|;u|e of Technology, China

(%1 CUDARGHEREIFATIRRF B
CUDA Abstraction

® Key Parallel Abstractions in CUDA

v' Hierarchy of concurrent threads

Host i
\/ 0S Device
\/ Grid 1
Kernel Block Block Block
! 0,0 | (L0 | (20
Block.”” Block '\ Block
01 | @y | @1
//I ,'l ! “‘
7 - 1\
/| Grid 2 v
/ /
7/ / o\
A ’ 1
Kernel = .) \
2 ,/ lI ‘ \‘
/[K Vo
.~ N 11 11 1l|

"Block (1, 1)

Tonghus

nology, China

CUDARHREIATEF BT

Thread Thread block

Per-block
Shared

Memory

Streaming Processor . .
Streaming Multiprocessor

Grid: Many blocks of threads

VSIS DOIIIIIII DO DO

) I)I))D))) I))))) D)D)

(& L K< (((« &L
el 2 < VP

\Y

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA Abstraction

® Key Parallel Abstractions in CUDA

v

v Shared memory model for cooperating threads

v

Host

nght

(Device) Grid

Block (0, 0)

Block (1, 0)

Thread (0, 0) |Thread (1, 0)| | Thread (0, 0) Thread (1, 0)

CUDABE S REFHATIEF Ui

CUDARH i 3H TR it

O
CUDA Abstraction

® Each thread can: Grid

Block (O, 0) Block (1, 0)

v' Read/write per-thread registers

Read/write per-thread local memory _ _
Read/write per-block shared memory

Read/write per-grid global memory
Thread (O, O)Thread (1, O0) Thread (O, O)Thread (1, O)

NN N X

Read/only per-grid constant memory

Host

Tonghua Su, School of Software, Harbin Institute of Technology, China

O

CUDA Abstraction
® Key Parallel Abstractions in CUDA
v
v

v" Lightweight synchronization primitives

Tonghua Su, School of Software, Harbin Institute of Technology, China

@ CUDARH REIATRFF Bt
CUDA Abstraction

® Global Synchronization

v" Finish a kernel and start a new one

v All writes from all threads complete before a kernel finishes

stepl<<<gridl,blkl>>>(...);
// The system ensures that all writes from stepl complete.
step2<<<grid2,blk2>>>(...);

v" Would need to decompose kernels into before and after parts

Tonghua Su, School of Software, Harbin Institute of Technology, China

@
CUDA Abstraction

® Threads Synchronization

v' To ensure the threads visit the shared memory in order
v'___syncthreads()

_ lec3 @
CUDA Abstraction

® Race Conditions

v" What is the value of a in thread 0?
v" What is the value of a in thread 127?

// vector[0] was equal to O

v' CUDA provides atomic operations to deal with this problem

Tonghua Su, School of Software, Harbin Institute of Technology, China

Q@ CUDARHE E3F 77
CUDA Abstraction

@® Atomics

v An atomic operation guarantees that only a single thread has access to a
piece of memory while an operation completes

v' Different types of atomic instructions:

® atomic{Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or,
Xor}

v Atomics are slower than normal load/store

v You can have the whole machine queuing on a single location in memory
v' More types in Fermi

v Atomics unavailable on G80!

Tonghua Su, School of Software, Harbin Institute of Technology, China

_ lec3 @
CUDA Abstraction

@® Atomics

Tonghua Su, School of Software, Harbin Institute of Technology, China

O
@
&)
@
®
©

Outline

Review Lecl & 2
Multithreading

CUDA Abstraction
Warp Scheduling

Lab 2

Software Layers in CUDA

Q CUDABHEREFATR it

@® |n its simplest form it looks like:
kernel _routine<<<gridDim, blockDim>>>(args);
v" gridDim is the number of instances of the kernel (the “grid” size)
v" blockDim is the number of threads within each instance (the “block” size)

v" args is a limited number of arguments, usually mainly pointers to arrays in
graphics memory, and some constants which get copied by value

v The more general form allows gridDim and blockDim to be 2D or 3D to simplify
application programs

Tonghua Su, School of Software, Harbin Institute of Technology, China

® 2D block and 2D grid

blockDim. y <

blockDim.x

L

.....
......

-

%

-
-
-

-
a®®
-
-
-
-

gridDim. y <

-
- -

"

gridDim. x

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDAR HREFHATEF Bt

O

Kernel Function

® 3D block and 3D grid

(18]
H
I
O
L
I
:
—
-\-l.
‘-’3";‘,%

ek o EaIRER s
A L LA A dll s
=

.

Tonghua Su, School of Software, Harbin Institute of Technology, China

O

Kernel Function

® How to calculate global block ID and thread ID?

Tonghua Su, School of Software, Harbin Institute of Technology, China

(%5 CUDARGH: EIFAT AL i it
CUDA Scheduling

® At a lower level, within the GPU:

v' each block of the execution kernel executes on an SMX

v" if the number of blocks exceeds the number of SMXs, then more than one
will run at a time on each SMX if there are enough registers and shared
memory, and the others will wait in a queue and execute later

v" all threads within one block can access local shared memory but can’t see
what the other block are doing (even if they are on the same SMX)

v' there are no guarantees on the order in which the blocks execute

Tonghua Su, School of Software, Harbin Institute of Technology, China

® Block Scheduling

CUDA Scheduling

v Execute in warps of 32 threads

CUDAE R

TR RO

Ready
Queue

Warp 1
(Theads 32
to 63)

Warp 2
(Theads 64
to 95)

Warp 3
(Theads

to 127)

96

Executing

Warp O
(Theads 0 to
31)

Suspended

Memory
Request
Pending

Scheduling Cycle 0

@ CUDARHE A ATRIF R
CUDA Scheduling

® Block Scheduling

v Execute in warps of 32 threads

Warp 2 Warp 3
Read
Queui (Theads 64 | (Theads 96
to 95) to 127)
Warp 1
Executing (Theads 32
to 63)
Warp 0
Suspended (Theads 0 to
31)
Memory
Request Addre;s 0to
Pending
Scheduling Cycle 1

CUDARHREIFTIEF Bt

O
CUDA Scheduling

® Block Scheduling

v Execute in warps of 32 threads

Ready
Queue
Executing
Warp 0 Warp 1 Warp 2 Warp 3
Suspended (Theads 0 to | (Theads 32 (Theads 64 (Theads 96
31) to 63) to 95) to 127)
g‘:”&g Address Oto | Address 32 | Address 64 | Address 96
au 31 to 63 to 95 to 127
Pending
Scheduling Cycle 8

® Block Scheduling

v Execute in warps of 32 threads

CUDA Scheduling

Ready
Queue

Warp 1
(Theads 32
to 63)

Executing

Warp 0
(Theads O to
31)

Suspended

Memory
Request
Pending

Warp 2 Warp 3
(Theads 64 (Theads 96
to 95) to 127)
Address 64 Address 96
to 95 to 127

Scheduling Cycle 9

CUDARHREIFTIEF Bt

O
@
&)
@
®
©

Outline

Review Lecl & 2
Multithreading

CUDA Abstraction

Warp Scheduling

Lab 2.1

Software Layers in CUDA

@ CUDARHE EIATRF B

© g 2 A2 N 1 U BE AL
v IS iFwarp it g R =
v ShRE, Awarp i RE N Tl g T R, IRt Eos AT A0 A
v' A% Kblock flgridfr) K /Nax tnda] 2
v oy HGE 2R R AR AL B A
v' 2 JL,COOK 5.3 FIWILT 7.3.3

__global _ void what_is_my_id(unsigned int * const block,
unsigned int * const thread,
unsigned int * const warp,
unsigned int * const calc_thread)

/* Thread id is block index * block size t thread offset into the block */
const unsigned int thread_idx = (blockldx.x * blockDim.x) + threadldx.x;
block[thread idx] = blockldx.x;

thread[thread idx] = threadldx.x;

/* Calculate warp using built in variable warpSize */

warp[thread_idx] = threadldx.x / warpSize;

calc_thread[thread idx] =thread_idx;

rorngrda oSu, SCrool O SOot1tvware, Farbirt mmistitute O TeCrnnology, Cllila

O
@
&)
@
®
©

Outline

Review Lecl & 2
Multithreading

CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

&

CUDA Application

N /

| [e.g. cublasSGEMM()

® Software Layer

CUDA Libraries (e.qg., cuFFT, cuBLAS)

7

NS

CUDA Runtime (CUDART)
AN

| | eq. cuCtxCreate() [|

/ NS A

Driver APl {(CUDA)
73
7S

CUDA Driver (User Mode)

e.g., cudaMalloc()

(internal interfaces)

.. | -D-UEEFE'KEH?EFbDL:IHdEIF}f

CUDA Driver (Kermel Mode)

Tonghua Su, School of Software, Harbin Institute of Technology, China

— e — — — — — — —— e e — — — — — — — —

H CUDAE M BEHATREF T

|
cu file > I
(Mixed CPU/GPU)_ :

)

nvcec

® nvcc compiling

GPU Code
pix, fatbin

Ry

Host-only Codae

ambeddad GPU
code)

|

Hast Compiléer

Host Exacutable

{with eambadded
GFU code)

i
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
Host coda (with :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CUDA Runtime

(e.g..
libeudan.so.4)

!

CUDA Driver
Tonghua Su, School of Software, HarSirflindi&HE v cHnology, China

	Slide Number 1
	Outline
	Outline
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Outline
	Multithreading
	Multithreading
	Multithreading
	Outline
	CUDA
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	Slide Number 22
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	Outline
	Kernel Function
	Kernel Function
	Kernel Function
	Kernel Function
	CUDA Scheduling
	CUDA Scheduling
	CUDA Scheduling
	CUDA Scheduling
	CUDA Scheduling
	Outline
	Lab 2.1 Warp Scheduling
	Outline
	Slide Number 44
	Slide Number 45

