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Review

 Hello CUDA：Vector Sum
__global__  addKernel(int * const a, const int * const b, const int * const c)
{

const unsigned int i = threadIdx.x;
c[i] = a[i] + b[i];

} void main(){
……
int *dev_a,*dev_b,*dev_c;
// Allocate GPU buffers for three vectors (two input, one output)    .
cudaMalloc((void**)&dev_c, 128* sizeof(int));
……
// Copy input vectors from host memory to GPU buffers.
cudaMemcpy(dev_a, a, 128* sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, 128* sizeof(int), cudaMemcpyHostToDevice);

// Launch a kernel on the GPU with one thread for each element.
addKernel<<<1, 128>>>(dev_c, dev_a, dev_b);

// Copy output vector from GPU buffer to host memory.
cudaMemcpy(c, dev_c, 128* sizeof(int), cudaMemcpyDeviceToHost);

cudaFree(dev_c);
……

}

线程ID，同时索引数据元素

分配显存

数据从主机复制到
GPU

调用内核函数
addKernel

数据从GPU复制回
主机

释放显存
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Review

 Amdahl’s Law

Amdahl, Gene (1967). “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities”.
AFIPS Conference Proceedings (30): 483–485.
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Review

 Single GPU Configuration 
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Review

 Multiple GPU Configuration 
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Review

 Kepler GPU Architecture

SMX
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Review

 Kepler GPU Architecture

 building block is a “streaming multiprocessor” (SMX):

 192 cores and 64k registers

 64KB of shared memory / L1 cache

 8KB cache for constants

 48KB texture cache for read-only arrays

 up to 2K threads per SMX
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Review

 Fermi GPU Architecture
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Review

 Fermi GPU Architecture

 older Fermi GPU has SM “streaming multiprocessor”:

 32 cores and 32k registers

 64KB of shared memory / L1 cache

 8KB cache for constants

 up to 1536 threads per SM
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Multithreading

 Key hardware feature is that the cores in an SMX are SIMT 
(Single Instruction Multiple Threads) cores:

 all cores execute the same instructions simultaneously, but with different 
data

 similar to vector computing on CRAY supercomputers 

 minimum of 32 threads all doing the same thing at (almost) the same time

 natural for graphics processing and much scientific computing

 SIMT is also a natural choice for many-core chips to simplify each core
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Multithreading

 Lots of active threads is the key to high performance:

 no “context switching”: each thread has its own registers ( which limits the 
number of active threads)

 threads on each SMX execute in groups of 32 called “warps” – execution 
alternates between “active” warps, with warps becoming temporarily 
“inactive” when waiting for data
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Multithreading

 for each thread, one operation completes long before the next 
starts – avoids the complexity of pipeline overlaps which can limit 
the performance of modern processors

 memory access from device memory has a delay of 400-600 
cycles; with 40 threads this is equivalent to 10-15 operations, so 
hopefully there’s enough computation to hide the latency
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CUDA

 CUDA (Compute Unified Device Architecture) is NVIDIA’s 
program development environment:

 based on C with some extensions 

 extensive C++ support

 FORTRAN support provided by PGI compiles lots of example code and 
good documentation 

 2-4 week learning curve for those with experience of OpenMP and MPI 
programming

 large user community on NVIDIA forums



Lec 3 19

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 CUDA virtualizes the physical hardware

 thread is a virtualized scalar processor (registers, PC, state)

 block is a virtualized multiprocessor (threads, shared mem.)

 Scheduled onto physical hardware without pre-emption

 threads/blocks launch & run to completion/suspension

 blocks should be independent 

• • •
Block MemoryBlock Memory

Global Memory
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CUDA Abstraction

 Key Parallel Abstractions in CUDA 

 Hierarchy of concurrent threads

 Shared memory model for cooperating threads 

 Lightweight synchronization primitives

…
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CUDA Abstraction

 Key Parallel Abstractions in CUDA 

 Hierarchy of concurrent threads

 Shared memory model for cooperating threads

 Lightweight synchronization primitives
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CUDA Abstraction

 Key Parallel Abstractions in CUDA 

 Hierarchy of concurrent threads

 Shared memory model for cooperating threads

 Lightweight synchronization primitives(Device) Grid
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CUDA Abstraction

 Each thread can:

 Read/write per-thread registers

 Read/write per-thread local memory

 Read/write per-block shared memory

 Read/write per-grid global memory

 Read/only per-grid constant memory
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CUDA Abstraction

 Key Parallel Abstractions in CUDA 

 Hierarchy of concurrent threads

 Shared memory model for cooperating threads

 Lightweight synchronization primitives
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CUDA Abstraction

 Global Synchronization 

 Finish a kernel and start a new one

 All writes from all threads complete before a kernel finishes

 Would need to decompose kernels into before and after parts

step1<<<grid1,blk1>>>(...);
// The system ensures that all writes from step1 complete.
step2<<<grid2,blk2>>>(...);
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CUDA Abstraction

 Threads Synchronization 

 To ensure the threads visit the shared memory in order 

 __syncthreads() 

__global__ void adj_diff(int *result, int *input)
{
int tx = threadIdx.x;
// allocate a __shared__ array, one element per thread
__shared__ int s_data[BLOCK_SIZE];
// each thread reads one element to s_data
unsigned int i = blockDim.x * blockIdx.x + tx;
s_data[tx] = input[i];

// avoid race condition: ensure all loads complete before continuing
__syncthreads();
if(tx > 0)

result[i] = s_data[tx] – s_data[tx–1];
else if(i > 0)
{

// handle thread block boundary
result[i] = s_data[tx] – input[i-1];

}
}
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CUDA Abstraction

 Race Conditions
 What is the value of a in thread 0?

 What is the value of a in thread 127?

 CUDA provides atomic operations to deal with this problem

threadId:0 threadId:127
// vector[0] was equal to 0
vector[0] += 5; vector[0] += 1;
...                                ...
a = vector[0];                    a = vector[0];
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CUDA Abstraction

 Atomics

 An atomic operation guarantees that only a single thread has access to a 
piece of memory while an operation completes

 Different types of atomic instructions:

• atomic{Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, 
Xor}

 Atomics are slower than normal load/store

 You can have the whole machine queuing on a single location in memory

 More types in Fermi

 Atomics unavailable on G80!
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CUDA Abstraction

 Atomics

// Determine frequency of colors in a picture
// colors have already been converted into ints
// Each thread looks at one pixel and increments
// a counter atomically
__global__ void histogram(int* color,

int* buckets)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
int c = colors[i]; 
atomicAdd(&buckets[c], 1);

}
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Kernel Function

 In its simplest form it looks like:
kernel_routine<<<gridDim, blockDim>>>(args);
 gridDim is the number of instances of the kernel (the “grid” size)

 blockDim is the number of threads within each instance (the “block” size)

 args is a limited number of arguments, usually mainly pointers to arrays in
graphics memory, and some constants which get copied by value

 The more general form allows gridDim and blockDim to be 2D or 3D to simplify
application programs
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Kernel Function

 2D block and 2D grid 
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Kernel Function

 3D block and 3D grid 
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Kernel Function

 How to calculate global block ID and thread ID?
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CUDA Scheduling

 At a lower level, within the GPU:

 each block of the execution kernel executes on an SMX

 if the number of blocks exceeds the number of SMXs, then more than one 
will run at a time on each SMX if there are enough registers and shared 
memory, and the others will wait in a queue and execute later 

 all threads within one block can access local shared memory but can’t see 
what the other block are doing (even if they are on the same SMX)

 there are no guarantees on the order in which the blocks execute



Lec 3 37

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Scheduling

 Block Scheduling

 Execute in warps of 32 threads
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CUDA Scheduling

 Block Scheduling

 Execute in warps of 32 threads
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CUDA Scheduling

 Block Scheduling

 Execute in warps of 32 threads
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CUDA Scheduling

 Block Scheduling

 Execute in warps of 32 threads
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Lab 2.1 Warp Scheduling

理解线程束的调度机制

 验证warp的线程数量

 加入计时功能，对warp的调度时间进行输出，并绘出散点图进行分析

 变大block和grid的大小会如何？

 给出对线程束调度机制的理解

 参见COOK 5.3 和WILT 7.3.3

__global__ void what_is_my_id(unsigned int * const block,
unsigned int * const thread,
unsigned int * const warp,
unsigned int * const calc_thread)

{
/* Thread id is block index * block size t thread offset into the block */
const unsigned int thread_idx = (blockIdx.x * blockDim.x) + threadIdx.x;
block[thread_idx] = blockIdx.x;
thread[thread_idx] = threadIdx.x;
/* Calculate warp using built in variable warpSize */
warp[thread_idx] = threadIdx.x / warpSize;
calc_thread[thread_idx] = thread_idx;

}
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 Software Layer
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 nvcc compiling
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