
2013秋-创新实验课 CUDA高性能并行程序设计

Lec 3 CUDA Software
Abstraction

Tonghua Su
School of Software

Harbin Institute of Technology

Lec 3 2

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Outline

Review Lec1 & 2
Multithreading
CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

1

2

3

4

5

6

Lec 3 3

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Outline

Review Lec1 & 2
Multithreading
CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

1

2

3

4

5

6

Lec 3 4

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Review

 Hello CUDA：Vector Sum
__global__ addKernel(int * const a, const int * const b, const int * const c)
{

const unsigned int i = threadIdx.x;
c[i] = a[i] + b[i];

} void main(){
……
int *dev_a,*dev_b,*dev_c;
// Allocate GPU buffers for three vectors (two input, one output) .
cudaMalloc((void**)&dev_c, 128* sizeof(int));
……
// Copy input vectors from host memory to GPU buffers.
cudaMemcpy(dev_a, a, 128* sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, 128* sizeof(int), cudaMemcpyHostToDevice);

// Launch a kernel on the GPU with one thread for each element.
addKernel<<<1, 128>>>(dev_c, dev_a, dev_b);

// Copy output vector from GPU buffer to host memory.
cudaMemcpy(c, dev_c, 128* sizeof(int), cudaMemcpyDeviceToHost);

cudaFree(dev_c);
……

}

线程ID，同时索引数据元素

分配显存

数据从主机复制到
GPU

调用内核函数
addKernel

数据从GPU复制回
主机

释放显存

Lec 3 5

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Review

Lec 3 6

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Review

 Amdahl’s Law

Amdahl, Gene (1967). “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities”.
AFIPS Conference Proceedings (30): 483–485.

Lec 3 7

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Review

 Single GPU Configuration

1 2

3 4

Lec 3 8

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Review

 Multiple GPU Configuration

1
2

3

Lec 3 9

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Review

 Kepler GPU Architecture

SMX

L2 cache

SMX SMX

SMX SMX SMX SMX

L1 cache /
shared memory

SMX

Lec 3 10

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Review

 Kepler GPU Architecture

 building block is a “streaming multiprocessor” (SMX):

 192 cores and 64k registers

 64KB of shared memory / L1 cache

 8KB cache for constants

 48KB texture cache for read-only arrays

 up to 2K threads per SMX

Lec 3 11

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Review

 Fermi GPU Architecture

SM SM SM

L2 cache

SM SM SM

SM SM SM SM SM SM SM

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C C C

C C C C

C C C C

L1 cache /
shared memory

SM

Lec 3 12

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Review

 Fermi GPU Architecture

 older Fermi GPU has SM “streaming multiprocessor”:

 32 cores and 32k registers

 64KB of shared memory / L1 cache

 8KB cache for constants

 up to 1536 threads per SM

Lec 3 13

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Outline

Review Lec1 & 2
Multithreading
CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

1

2

3

4

5

6

Lec 3 14

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Multithreading

 Key hardware feature is that the cores in an SMX are SIMT
(Single Instruction Multiple Threads) cores:

 all cores execute the same instructions simultaneously, but with different
data

 similar to vector computing on CRAY supercomputers

 minimum of 32 threads all doing the same thing at (almost) the same time

 natural for graphics processing and much scientific computing

 SIMT is also a natural choice for many-core chips to simplify each core

Lec 3 15

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Multithreading

 Lots of active threads is the key to high performance:

 no “context switching”: each thread has its own registers (which limits the
number of active threads)

 threads on each SMX execute in groups of 32 called “warps” – execution
alternates between “active” warps, with warps becoming temporarily
“inactive” when waiting for data

Lec 3 16

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Multithreading

 for each thread, one operation completes long before the next
starts – avoids the complexity of pipeline overlaps which can limit
the performance of modern processors

 memory access from device memory has a delay of 400-600
cycles; with 40 threads this is equivalent to 10-15 operations, so
hopefully there’s enough computation to hide the latency

Lec 3 17

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Outline

Review Lec1 & 2
Multithreading
CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

1

2

3

4

5

6

Lec 3 18

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA

 CUDA (Compute Unified Device Architecture) is NVIDIA’s
program development environment:

 based on C with some extensions

 extensive C++ support

 FORTRAN support provided by PGI compiles lots of example code and
good documentation

 2-4 week learning curve for those with experience of OpenMP and MPI
programming

 large user community on NVIDIA forums

Lec 3 19

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 CUDA virtualizes the physical hardware

 thread is a virtualized scalar processor (registers, PC, state)

 block is a virtualized multiprocessor (threads, shared mem.)

 Scheduled onto physical hardware without pre-emption

 threads/blocks launch & run to completion/suspension

 blocks should be independent

• • •
Block MemoryBlock Memory

Global Memory

Lec 3 20

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Key Parallel Abstractions in CUDA

 Hierarchy of concurrent threads

 Shared memory model for cooperating threads

 Lightweight synchronization primitives

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1
Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

…Block 1 Warps

Lec 3 21

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Key Parallel Abstractions in CUDA

 Hierarchy of concurrent threads

 Shared memory model for cooperating threads

 Lightweight synchronization primitives

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Lec 3 22

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Thread

Memory

Streaming Processor

Thread block

Per-block
Shared
Memory

Streaming Multiprocessor

Memory

Grid: Many blocks of threads

. . .

S
M

E
M

S
M

E
M

S
M

E
M

S
M

E
M

Global Memory

S
M

E
M

Lec 3 23

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Key Parallel Abstractions in CUDA

 Hierarchy of concurrent threads

 Shared memory model for cooperating threads

 Lightweight synchronization primitives(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Lec 3 24

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Each thread can:

 Read/write per-thread registers

 Read/write per-thread local memory

 Read/write per-block shared memory

 Read/write per-grid global memory

 Read/only per-grid constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Lec 3 25

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Key Parallel Abstractions in CUDA

 Hierarchy of concurrent threads

 Shared memory model for cooperating threads

 Lightweight synchronization primitives

Lec 3 26

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Global Synchronization

 Finish a kernel and start a new one

 All writes from all threads complete before a kernel finishes

 Would need to decompose kernels into before and after parts

step1<<<grid1,blk1>>>(...);
// The system ensures that all writes from step1 complete.
step2<<<grid2,blk2>>>(...);

Lec 3 27

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Threads Synchronization

 To ensure the threads visit the shared memory in order

 __syncthreads()

__global__ void adj_diff(int *result, int *input)
{
int tx = threadIdx.x;
// allocate a __shared__ array, one element per thread
__shared__ int s_data[BLOCK_SIZE];
// each thread reads one element to s_data
unsigned int i = blockDim.x * blockIdx.x + tx;
s_data[tx] = input[i];

// avoid race condition: ensure all loads complete before continuing
__syncthreads();
if(tx > 0)

result[i] = s_data[tx] – s_data[tx–1];
else if(i > 0)
{

// handle thread block boundary
result[i] = s_data[tx] – input[i-1];

}
}

Lec 3 28

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Race Conditions
 What is the value of a in thread 0?

 What is the value of a in thread 127?

 CUDA provides atomic operations to deal with this problem

threadId:0 threadId:127
// vector[0] was equal to 0
vector[0] += 5; vector[0] += 1;
... ...
a = vector[0]; a = vector[0];

Lec 3 29

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Atomics

 An atomic operation guarantees that only a single thread has access to a
piece of memory while an operation completes

 Different types of atomic instructions:

• atomic{Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or,
Xor}

 Atomics are slower than normal load/store

 You can have the whole machine queuing on a single location in memory

 More types in Fermi

 Atomics unavailable on G80!

Lec 3 30

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Abstraction

 Atomics

// Determine frequency of colors in a picture
// colors have already been converted into ints
// Each thread looks at one pixel and increments
// a counter atomically
__global__ void histogram(int* color,

int* buckets)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
int c = colors[i];
atomicAdd(&buckets[c], 1);

}

Lec 3 31

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Outline

Review Lec1 & 2
Multithreading
CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

1

2

3

4

5

6

Lec 3 32

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Kernel Function

 In its simplest form it looks like:
kernel_routine<<<gridDim, blockDim>>>(args);
 gridDim is the number of instances of the kernel (the “grid” size)

 blockDim is the number of threads within each instance (the “block” size)

 args is a limited number of arguments, usually mainly pointers to arrays in
graphics memory, and some constants which get copied by value

 The more general form allows gridDim and blockDim to be 2D or 3D to simplify
application programs

Lec 3 33

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Kernel Function

 2D block and 2D grid

Lec 3 34

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Kernel Function

 3D block and 3D grid

Lec 3 35

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Kernel Function

 How to calculate global block ID and thread ID?

Lec 3 36

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Scheduling

 At a lower level, within the GPU:

 each block of the execution kernel executes on an SMX

 if the number of blocks exceeds the number of SMXs, then more than one
will run at a time on each SMX if there are enough registers and shared
memory, and the others will wait in a queue and execute later

 all threads within one block can access local shared memory but can’t see
what the other block are doing (even if they are on the same SMX)

 there are no guarantees on the order in which the blocks execute

Lec 3 37

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Scheduling

 Block Scheduling

 Execute in warps of 32 threads

Lec 3 38

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Scheduling

 Block Scheduling

 Execute in warps of 32 threads

Lec 3 39

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Scheduling

 Block Scheduling

 Execute in warps of 32 threads

Lec 3 40

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CUDA Scheduling

 Block Scheduling

 Execute in warps of 32 threads

Lec 3 41

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Outline

Review Lec1 & 2
Multithreading
CUDA Abstraction

Warp Scheduling

Lab 2.1

Software Layers in CUDA

1

2

3

4

5

6

Lec 3 42

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Lab 2.1 Warp Scheduling

理解线程束的调度机制

 验证warp的线程数量

 加入计时功能，对warp的调度时间进行输出，并绘出散点图进行分析

 变大block和grid的大小会如何？

 给出对线程束调度机制的理解

 参见COOK 5.3 和WILT 7.3.3

__global__ void what_is_my_id(unsigned int * const block,
unsigned int * const thread,
unsigned int * const warp,
unsigned int * const calc_thread)

{
/* Thread id is block index * block size t thread offset into the block */
const unsigned int thread_idx = (blockIdx.x * blockDim.x) + threadIdx.x;
block[thread_idx] = blockIdx.x;
thread[thread_idx] = threadIdx.x;
/* Calculate warp using built in variable warpSize */
warp[thread_idx] = threadIdx.x / warpSize;
calc_thread[thread_idx] = thread_idx;

}

Lec 3 43

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Outline

Review Lec1 & 2
Multithreading
CUDA Abstraction

Warp Scheduling

Lab 2

Software Layers in CUDA

1

2

3

4

5

6

Lec 3 44

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

 Software Layer

Lec 3 45

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

 nvcc compiling

	Slide Number 1
	Outline
	Outline
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Outline
	Multithreading
	Multithreading
	Multithreading
	Outline
	CUDA
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	Slide Number 22
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	CUDA Abstraction
	Outline
	Kernel Function
	Kernel Function
	Kernel Function
	Kernel Function
	CUDA Scheduling
	CUDA Scheduling
	CUDA Scheduling
	CUDA Scheduling
	CUDA Scheduling
	Outline
	Lab 2.1 Warp Scheduling
	Outline
	Slide Number 44
	Slide Number 45

