
2013秋-创新实验课 CUDA高性能并行程序设计

Lec 4 Memory Hierarchy

Tonghua Su
School of Software

Harbin Institute of Technology

Lec 4 2

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Outline

CPU Memory
GPU Memory

Variables

Lab 2.2

Lab 2.3

1

2

3

4

5

Lec 4 3

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Insights on Memory

 Key challenge in modern computer architecture

 no point in blindingly fast computation if data can’t be moved in and out
fast enough

 need lots of memory for big applications

 very fast memory is also very expensive

 End up being pushed towards a hierarchical design

Lec 4 4

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CPU Memory Hierarchy

4 – 16 GB
1GHz DDR3

200+ cycle access, 20-50GB/s

2 – 6 MB
2GHz SRAM

25-35 cycle access, 200-400GB/s

32KB + 256KB
3GHz SRAM

5-12 cycle access
faster

more expensive
smaller

Lec 4 5

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

CPU Memory Hierarchy

 Execution speed relies on exploiting data locality

 temporal locality: a data item just accessed is likely to be used again in
the near future, so keep it in the cache

 spatial locality: neighboring data is also likely to be used soon, so load
them into the cache at the same time using a ‘wide’ bus (like a multi-lane
motorway)

Wide bus is only way to get high bandwidth to slow main
memory

Lec 4 6

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Cache

 The cache line is the basic unit of data transfer; typical size is 64
bytes ≡ 8×8-byte items.

With a single cache, when the CPU loads data into a register:

 it looks for line in cache

 if there (hit), it gets data

 if not (miss), it gets entire line from main memory, displacing an existing
line in cache (usually least recently used)

When the CPU stores data from a register:

 same procedure

Lec 4 7

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Importance of Locality

 Typical workstation:
 10 Gflops CPU

 20 GB/s memory ↔ L2 cache bandwidth

 64 bytes/line

 20GB/s ≡ 300M line/s ≡ 2.4G double/s
 At worst, each flop requires 2 inputs and has 1 output, forcing loading

of 3 lines ⇒ 100 Mflops
 If all 8 variables/line are used, then this increases to 800 Mflops.
 To get up to 10Gflops needs temporal locality, re-using data already in

the cache.

Lec 4 8

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Kepler

 Kepler GPU

SMX

L2 cache

SMX SMX

SMX SMX SMX SMX

L1 cache /
shared memory

SMX

Lec 4 9

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Kepler

 usually 128 bytes cache line (32 floats or 16 doubles) (32 bytes
under certain circumstances)

 384-bit memory bus from device memory to L2 cache

 up to 250 GB/s bandwidth

 unified 1.5MB L2 cache for all SMX’s

 each SMX has 48kB of shared memory / L1 cache (split 16/48,
32/32 or 48/16)

 no global cache coherency as in CPUs, so should (almost) never
have different blocks updating the same global array elements

Lec 4 10

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Fermi

 Fermi GPU

SM SM SM

L2 cache

SM SM SM

SM SM SM SM SM SM SM

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C C C

C C C C

C C C C

L1 cache /
shared memory

SM

Lec 4 11

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Fermi

 128 bytes cache line (32 floats or 16 doubles) (32 bytes under
certain circumstances)

 384-bit memory bus from device memory to L2 cache

 up to 190 GB/s bandwidth

 unified 768kB L2 cache for all SM’s

 each SM has 16kB or 48kB of L1 cache(64kB is split 16/48 or
48/16 between L1 cache and shared memory)

 no global cache coherency as in CPUs, so should (almost) never
have different blocks updating the same global array elements

Lec 4 12

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

GPU Memory Hierarchy

faster
more expensive

smaller

1 – 6 GB
1GHz GDDR5

1.5MB

200-300 cycle access, 250GB/s

16/32/48KB

200-300 cycle access, 500GB/s

80 cycle access

Lec 4 13

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Importance of Locality

 Fermi GPU
 500G flops GPU
 250 GB/s memory ↔ L2 cache bandwidth
 128 bytes/line

 250GB/s ≡ 2G line/s ≡ 32G double/s
 At worst, each flop requires 2 inputs and has 1 output, forcing loading

of 3 lines ⇒ 670 Mflops
 If all 16 doubles/line are used, increases to 11 Gflops
 To get up to 500Gflops needs about 15 flops per double transferred

to/from device memory
 Even with careful implementation, many algorithms are bandwidth

limited not compute-bound

Lec 4 14

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Coalesced Transfer

 32 threads in a warp will address neighbouring elements of array x
 if the data is correctly “aligned” so that x[0] is at the beginning of a

cache line, then x[0] – x[31] will be in same cache line – a “coalesced”
transfer
 hence we get perfect spatial locality

__global__ void my_first_kernel(float *x)
{

int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = threadIdx.x;
}

Lec 4 15

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

A bad kernel

 in this case, different threads within a warp access widely spaced
elements of array x – a “strided” array access
 each access involves a different cache line, so performance will be

awful

__global__ void bad_kernel(float *x)
{

int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[1000*tid] = threadIdx.x;
}

Lec 4 16

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Variables-Global arrays

 So far, concentrated on global / device arrays:
 held in the large device memory

 allocated by host code

 pointers held by host code and passed into kernels

 continue to exist until freed by host code

 since blocks execute in an arbitrary order, if one block modifies an array element,
no other block should read or write that same element

Lec 4 17

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Variables-Global variables

 Global variables can also be created by declarations with global scope
within kernel code file

__device__ int reduction_lock=0;

__global__ void kernel_1(...) {
...

}

__global__ void kernel_2(...) {
...

}

Lec 4 18

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Variables-Global variables

 the __device__ prefix tells nvcc this is a global variable in the GPU,
not the CPU.
 the variable can be read and modified by any kernel
 its lifetime is the lifetime of the whole application
 can also declare arrays of fixed size
 can read/write by host code using special routines

cudaMemcpyToSymbol, cudaMemcpyFromSymbol or with standard
cudaMemcpy in combination with cudaGetSymbolAddress
 in my own CUDA programming, I rarely use this capability but it is

occasionally very useful

Lec 4 19

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Constant variables

 Very similar to global variables, except that they can’t be
modified by kernels:
 defined with global scope within the kernel file using the prefix __constant__
 initialised by the host code using cudaMemcpyToSymbol, cudaMemcpyFromSymbol

or cudaMemcpy in combination with cudaGetSymbolAddress

 Only 64KB of constant memory, but big benefit is that each SMX
has a 8KB cache

 when all threads read the same constant, almost as fast as a register

 doesn’t tie up a register, so very helpful in minimising the total number of
registers required

 (On Fermi GPUs, constant cache is also used for global arrays declared to be
read-only within a kernel, and accessed uniformly by all threads i.e. all threads
read the same element)

Lec 4 20

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Constants

 A constant variable has its value set at run-time

 But code also often has plain constants whose value is known at
compile-time:

 Leave these as they are – they seem to be embedded into the
executable code so they don’t use up any registers

 Don’t forget the f at the end if you want single precision; in
C/C++

#define PI 3.1415926f

a = b / (2.0f * PI);

single × double = double

Lec 4 21

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Registers

Within each kernel, by default, individual variables are assigned
to registers:

__global__ void lap(int I, int J, float *u1, float *u2) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {
u2[id] = u1[id]; // Dirichlet b.c.’s

}
else {

u2[id] = 0.25f * (u1[id-1] + u1[id+1] + u1[id-I] + u1[id+I]);
}

}

Lec 4 22

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Registers

 64K 32-bit registers per SMX

 up to 63 registers per thread (up to 255 for K20 / K20X)

 up to 2048 threads (at most 1024 per thread block)

 max registers per thread ⇒ 1024 threads (256 threads for K20 /
K20X)

 max threads ⇒ 32 registers per thread

 not much difference between “fat” and “thin” threads (except for
K20 / K20X)

Lec 4 23

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Registers

What happens if your application needs more registers?

 They “spill” over into L1 cache, and from there to device memory – precise
mechanism unclear, but

 either certain variables become device arrays with one element per thread

 or the contents of some registers get “saved” to device memory so they can
used for other purposes, then the data gets “restored” later

 Either way, the application suffers from the latency and bandwidth
implications of using device memory

Lec 4 24

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Registers

 Avoiding register spill is now one of our main concerns in big
applications, but remember:

 with 1024 threads, 400-600 cycle latency of device memory is usually OK
because some warps can do useful work while others wait for data

 provided there are 20 flops per variable read from (or written to) device
memory, the bandwidth is not a limiting issue

Lec 4 25

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Local arrays

What happens if your application uses a little array?

__global__ void lap(float *u) {

float ut[3];

int tid = threadIdx.x + blockIdx.x*blockDim.x;

for (int k=0; k<3; k++)
ut[k] = u[tid+k*gridDim.x*blockDim.x];

for (int k=0; k<3; k++)
u[tid+k*gridDim.x*blockDim.x] =

A[3*k]*ut[0]+A[3*k+1]*ut[1]+A[3*k+2]*ut[2];
}

Lec 4 26

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Local arrays

 In simple cases like this (quite common) compiler converts to
scalar registers:

__global__ void lap(float *u) {
int tid = threadIdx.x + blockIdx.x*blockDim.x;
float ut0 = u[tid+0*gridDim.x*blockDim.x];
float ut1 = u[tid+1*gridDim.x*blockDim.x];
float ut2 = u[tid+2*gridDim.x*blockDim.x];

u[tid+0*gridDim.x*blockDim.x] =A[0]*ut0 + A[1]*ut1 + A[2]*ut2;
u[tid+1*gridDim.x*blockDim.x] =A[3]*ut0 + A[4]*ut1 + A[5]*ut2;
u[tid+2*gridDim.x*blockDim.x] =A[6]*ut0 + A[7]*ut1 + A[8]*ut2;

}

Lec 4 27

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Local arrays

 In more complicated cases, it puts the array into device memory

 still referred to in the documentation as a “local array” because
each thread has its own private copy

 held in L1 cache by default, may never be transferred to device
memory

 16kB of L1 cache equates to 4096 32-bit variables, which is only
4 per thread when using 1024 threads

 beyond this, it will have to spill to device memory

Lec 4 28

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Shared memory

 In a kernel, the prefix __shared__ as in
__shared__ int x_dim;
__shared__ float x[128];
 declares data to be shared between all of the threads in the thread

block – any thread can set its value, or read it.
 There can be several benefits:
 essential for operations requiring communication between threads (e.g.

summation in lecture 4)

 useful for data re-use (I use it for unstructured grid applications)

 alternative to local arrays in device memory reduces use of registers when a
variable has same value for all threads

Lec 4 29

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Shared memory

 If a thread block has more than one warp, it’s not pre-determined when
each warp will execute its instructions – warp 1 could be many
instructions ahead of warp 2, or well behind.
 Consequently, almost always need thread synchronisation to ensure

correct use of shared memory.
 Instruction

inserts a “barrier”; no thread/warp is allowed to proceed beyond this point
until the rest have reached it (like a roll call on a school outing)

__syncthreads();

Lec 4 30

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Shared memory

 So far, have discussed statically-allocated shared memory – the size is
known at compile-time
 Can also create dynamic shared-memory arrays but this is more

complex
 Total size is specified by an optional third argument when launching

the kernel:
kernel<<<blocks,threads,shared_bytes>>>(...)

Lec 4 31

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Shared memory

 Kepler has 64KB which is split 16/48, 32/32 or 48/16 between L1
cache and shared memory:
 this split can be set by the programmer using

 default is 48KB of shared memory if not set by

 might be good to switch to 16KB of shared memory if the kernel
doesn’t need much shared memory

cudaFuncSetCacheConfig
or
cudaDeviceSetCacheConfig

cudaDeviceSetCacheConfig

Lec 4 32

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Texture memory

 Finally, we have texture memory:
 originally, intended primarily for pure graphics applications

 in Kepler K20, the texture cache is 48kB and can be used as a cache for read-only
global arrays which are accessed non-uniformly (i.e. different threads read
different elements)

 need to declare global array with

qualifiers so that the compiler knows that it is read-only

const __restrict__

Lec 4 33

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Variables

Variable declaration Memory Scope Lifetime
int var; register thread thread

int array_var[10]; local thread thread

__shared__ int shared_var; shared block block

__device__ int global_var; global grid application

__constant__ int constant_var; constant grid application

Variable declaration Memory Penalty

int var; register 1x

int array_var[10]; local 100x

__shared__ int shared_var; shared 1x

__device__ int global_var; global 100x

__constant__ int constant_var; constant 1x

Lec 4 34

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Non-blocking loads/stores

 What happens with the following code?

 Load doesn’t block until needed; store doesn’t block unless, or until,
danger of modification

__kernel__ void lap(float *u1, float *u2) {
float a;

a = u1[threadIdx.x + blockIdx.x*blockDim.x]
...
...
u2[threadIdx.x + blockIdx.x*blockDim.x] = a;
...
...

}

Lec 4 35

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Active blocks per SM

 Each block require certain resources:
 threads
 registers (registers per thread × number of threads)

 shared memory (static + dynamic)
 Together these determine how many blocks can be run simultaneously

on each SMX – up to a maximum of 16 blocks

Lec 4 36

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDA高性能并行程序设计

Active blocks per SMX

 general advice:
 number of active threads depends on number of registers each needs
 good to have at least 4 active blocks, each with at least 128 threads
 smaller number of blocks when each needs lots of shared memory
 larger number of blocks when they don’t need shared memory

 On Kepler:
 maybe 4 big blocks (256 threads) if each needs a lot of shared memory
 maybe 8 small blocks (128 threads) if no shared memory needed
 or 4 small blocks (128 threads) if each thread needs lots of registers

 Very important to experiment with different block sizes to find what
gives the best performance.
 On Fermi:
 maybe 3 big blocks (256 threads) if each needs a lot of shared memory
 maybe 6 small blocks (128 threads) if no shared memory needed
 or 4 small blocks (128 threads) if each thread needs lots of registers

	Slide Number 1
	Outline
	Insights on Memory
	CPU Memory Hierarchy
	CPU Memory Hierarchy
	Cache
	Importance of Locality
	Kepler
	Kepler
	Fermi
	Fermi
	GPU Memory Hierarchy
	Importance of Locality
	Coalesced Transfer
	A bad kernel
	Variables-Global arrays
	Variables-Global variables
	Variables-Global variables
	Constant variables
	Constants
	Registers
	Registers
	Registers
	Registers
	Local arrays
	Local arrays
	Local arrays
	Shared memory
	Shared memory
	Shared memory
	Shared memory
	Texture memory
	Variables
	Non-blocking loads/stores
	Active blocks per SM
	Active blocks per SMX

