CUDARHREIATEF BT

2013FK- A1l Hr L ¥R

Lec 4 Memory Hierarchy

Tonghua Su
School of Software
Harbin Institute of Technology

O

Outline

) CPU Memory
(> GPU Memory
(3) Variables

(49 Lab2.2

G Lab2.3

Tonghua Su, School of Software, Harbin Institute of Technology, China

&

Insights on Memory

® Key challenge in modern computer architecture

v no point in blindingly fast computation if data can’t be moved in and out
fast enough

v need lots of memory for big applications
v' very fast memory is also very expensive

® End up being pushed towards a hierarchical design

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDAR HREFHATEF Bt

Main memory | i

v

faster
more expensive
smaller

200+ cycle access, 20-50GB/s

L3 Cache

2—-6 MB
2GHz SRAM

Tﬂl 25-35 cycle access, 200-400GB/s

L1/L2 Cache

32KB + 256KB
3GHz SRAM

5-12 cycle access

registers

Tonghua Su, Scho 5 M Institute of Technology, China

Q) CUDARGH: EIFAT AL i it
CPU Memory Hierarchy

® Execution speed relies on exploiting data locality

v' temporal locality: a data item just accessed is likely to be used again in
the near future, so keep it in the cache

v spatial locality: neighboring data is also likely to be used soon, so load
them into the cache at the same time using a ‘wide’ bus (like a multi-lane
motorway)

® \Wide bus is only way to get high bandwidth to slow main
memory

Tonghua Su, School of Software, Harbin Institute of Technology, China

&

Cache

® The cache line is the basic unit of data transfer; typical size is 64
bytes = 8x8-byte items.
® \Vith a single cache, when the CPU loads data into a register:

v it looks for line in cache
v if there (hit), it gets data

v if not (miss), it gets entire line from main memory, displacing an existing
line in cache (usually least recently used)

® \When the CPU stores data from a register:

v' same procedure

Tonghua Su, School of Software, Harbin Institute of Technology, China

O

® Typical workstation:
v 10 Gflops CPU
v 20 GB/s memory < L2 cache bandwidth
v' 64 bytes/line

® 20GB/s = 300M line/s = 2.4G double/s

® At worst, each flop requires 2 inputs and has 1 output, forcing loading
of 3 lines = 100 Mfiops

@® |f all 8 variables/line are used, then this increases to 800 Mflops.

@® To get up to 10Gflops needs temporal locality, re-using data already in
the cache.

Tonghua Su, School of Software, Harbin Institute of Technology, China

CUDAR HREFHATEF Bt

®

KfperPU OOOO0O0000000d
OO0OO0OO00O00000
Qooaooooooon

OO0O0O0O0000000
OO0OO0OO00O00000
OO0OO0O0000000
OO0O0O0O0000000
QOoO0dOooaaoon
OOOO0O0000000d
OO0OO0OO00O00000
OOoOOOooooooon
OO0OO0O00000000
OO0OO0OO00O00000
OO0OO0O0000000

SMX SMX SMX SMX

L2 cache \
OOoOO0O0000oddg

\\ OooOoOooooooon

SMX SMX SMX | | SMX \ L1 cache /

shared memory

Tonghua Su, School of Software, Harbin Institute of Technology, China

@) CUDARHHEIHATRAF i
Kepler

® usually 128 bytes cache line (32 floats or 16 doubles) (32 bytes
under certain circumstances)

® 384-bit memory bus from device memory to L2 cache
® up to 250 GB/s bandwidth
@® unified 1.5MB L2 cache for all SMX’s

® cach SMX has 48kB of shared memory / L1 cache (split 16/48,
32/32 or 48/16)

® no global cache coherency as in CPUs, so should (almost) never
have different blocks updating the same global array elements

Tonghua Su, School of Software, Harbin Institute of Technology, China

D CUDARith BT R B

® Fermi GPU

/ cl{cl|cl||c
—= _— | [c][c][c][c
cllc]icl|c
SM SM SM SM SM SM SM clicliclic
cl{cllcl||c
. cllcllcllc
L2 cache \ JlEIEIE
\ cl[cl[c|[c

SM SM SM SM SM SM SM L1 cache/
shared memory

Tonghua Su, School of Software, Harbin Institute of Technology, China

@) CUDARHE EIATRF B

® 128 bytes cache line (32 floats or 16 doubles) (32 bytes under
certain circumstances)

® 384-bit memory bus from device memory to L2 cache
® up to 190 GB/s bandwidth
® unified 768kB L2 cache for all SM'’s

® cach SM has 16kB or 48kB of L1 cache(64kB is split 16/48 or
48/16 between L1 cache and shared memory)

® no global cache coherency as in CPUs, so should (almost) never
have different blocks updating the same global array elements

Tonghua Su, School of Software, Harbin Institute of Technology, China

é CUDAR H: B AT R Bt

GPU Memory Hierarchy

Device memory | :-sce

1GHz GDDR5

u 200-300 cycle access, 250GB/s

L2 Cache 1.5MB

“ﬂ 200-300 cycle access, 500GB/s

L1 Cache | 16/32148xB

\ 4

faster uuu 80 cycle access

more exXpensive reg |Ste rs

smaller

Tonghua Su, School of Software, Harbin Institute of Technology, China

@ CUDARIHE RS ATRRE B

® Fermi GPU
v 500G flops GPU
v 250 GB/s memory « L2 cache bandwidth
v' 128 bytes/line

® 250GB/s = 2G line/s = 32G double/s

® At worst, each flop requires 2 inputs and has 1 output, forcing loading
of 3 lines = 670 Mflops

@® |f all 16 doubles/line are used, increases to 11 Gflops

® To get up to 500Gflops needs about 15 flops per double transferred
to/from device memory

® Even with careful implementation, many algorithms are bandwidth
limited not compute-bound

Tonghua Su, School of Software, Harbin Institute of Technology, China

@ CUDAR H: B AT R Bt

__global__ void my _first_kernel(float *x)

{

Int tid = threadldx.x + blockDim.x*blockldx.x;

X[tid] = threadldx.x;
}

@® 32 threads in a warp will address neighbouring elements of array x

® if the data is correctly “aligned” so that x[0] is at the beginning of a
cach(]ec line, then x[0] — x[31] will be in same cache line — a “coalesced”
transfer

® hence we get perfect spatial locality

Tonghua Su, School of Software, Harbin Institute of Technology, China

@ CUDAR B8 AT Bt

__0lobal _ void bad_kernel(float *x)

{

Int tid = threadldx.x + blockDim.x*blockldx.x;

X[1000*tid] = threadldx.x;
}

® in this case, different threads within a warp access widely spaced
elements of array x — a “strided” array access

@® cach access involves a different cache line, so performance will be
awful

Tonghua Su, School of Software, Harbin Institute of Technology, China

D CUDARHE EIATRF B

@® So far, concentrated on global / device arrays:
v" held in the large device memory
v" allocated by host code
v" pointers held by host code and passed into kernels

v" continue to exist until freed by host code

v" since blocks execute in an arbitrary order, if one block modifies an array element,
no other block should read or write that same element

Tonghua Su, School of Software, Harbin Institute of Technology, China

&

Variables-Global variables

@® Global variables can also be created by declarations with global scope
within kernel code file

__device__int reduction_lock=0;

__global __ void kernel_1(...) {

}

__global __ void kernel_2(...) {

}

Tonghua Su, School of Software, Harbin Institute of Technology, China

D CUDARHE EIATRF B

@® the device prefix tells nvce this is a global variable in the GPU,
not the CPU.

@® the variable can be read and modified by any kernel
® its lifetime is the lifetime of the whole application
@® can also declare arrays of fixed size

@® can read/write by host code using special routines
cudaMemcpyToSymbol, cudaMemcpyFromSymbol or with standard
cudaMemcpy in combination with cudaGetSymbolAddress

® in my own CUDA programming, | rarely use this capability but it is
occasionally very useful

Tonghua Su, School of Software, Harbin Institute of Technology, China

O

® Very similar to global variables, except that they can’t be
modified by kernels:
v" defined with global scope within the kernel file using the prefix __constant__

v" initialised by the host code using cudaMemcpyToSymbol, cudaMemcpyFromSymbol
or cudaMemcpy in combination with cudaGetSymbolAddress

® Only 64KB of constant memory, but big benefit is that each SMX
has a 8KB cache
v" when all threads read the same constant, almost as fast as a register

v' doesn’t tie up a register, so very helpful in minimising the total number of
registers required

v (On Fermi GPUs, constant cache is also used for global arrays declared to be

read-only within a kernel, and accessed uniformly by all threads i.e. all threads
read the same element)

Tonghua Su, School of Software, Harbin Institute of Technology, China

@ CUDARHE EIATRF B

@® A constant variable has its value set at run-time

® But code also often has plain constants whose value is known at
compile-time:

#define PI 3.1415926f
a=Db/(2.0f*Pl),

@® | cave these as they are — they seem to be embedded into the
executable code so they don’t use up any registers

® Don't forget the f at the end if you want single precision; in
C/C++

single x double = double

Tonghua Su, School of Software, Harbin Institute of Technology, China

(%1 CUDABHEREFATR it

® \Vithin each kernel, by default, individual variables are assigned
to registers:

__global__ void lap(int I, int J,float *ul, float *u2) {

Int 1 = threadldx.x + blockldx.x*blockDim.x;
Int j = threadldx.y + blockldx.y*blockDim.y;
Int id =1 + J*;

it (i==0 | i==-1]| j==0 || j==J-1) {
u2[id] = ulfid]; /Il Dirichlet b.c.’s
}
else {
u2[id] = 0.25f * (ulid-1] + ul[id+1] + ul[id-1] + ul[id+l]);
}
}

Tonghua Su, School of Software, Harbin Institute of Technology, China

Q CUDABHEREFATR it

Registers

® 64K 32-bit registers per SMX
® up to 63 registers per thread (up to 255 for K20 / K20X)
® up to 2048 threads (at most 1024 per thread block)

® max registers per thread = 1024 threads (256 threads for K20 /
K20X)

® max threads = 32 registers per thread

® not much difference between “fat” and “thin” threads (except for
K20 / K20X)

Tonghua Su, School of Software, Harbin Institute of Technology, China

&

Registers

® \What happens if your application needs more registers?

v They “spill” over into L1 cache, and from there to device memory — precise
mechanism unclear, but

v' either certain variables become device arrays with one element per thread

AN

or the contents of some registers get “saved” to device memory so they can
used for other purposes, then the data gets “restored” later

v’ Either way, the application suffers from the latency and bandwidth
iImplications of using device memory

Tonghua Su, School of Software, Harbin Institute of Technology, China

O

Registers

® Avoiding register spill is now one of our main concerns in big
applications, but remember:

v with 1024 threads, 400-600 cycle latency of device memory is usually OK
because some warps can do useful work while others wait for data

v' provided there are 20 flops per variable read from (or written to) device
memory, the bandwidth is not a limiting issue

Tonghua Su, School of Software, Harbin Institute of Technology, China

@ CUDAR t B - AT IR

® \What happens if your application uses a little array?
__global__ void lap(float *u) {

float ut[3];

Int tid = threadldx.x + blockldx.x*blockDim.x;

for (int k=0; k<3; k++)
ut[k] = u[tid+k*gridDim.x*blockDim.x];

for (int k=0; k<3; k++)

u[tid+k*gridDim.x*blockDim.x] =
A[3*K]*ut[O]+A[3*k+1]*ut[1]+A[3*k+2]*ut[2];

Tonghua Su, School of Software, Harbin Institute of Technology, China

9

CUDAR HREFHATEF Bt

® In simple cases like this (quite common) compiler converts to
scalar registers:

__global__ void lap(float *u) {
Int tid = threadldx.x + blockldx.x*blockDim.x;

float ut0 =
float utl =
float ut2 =

u
u
u

tid+0*gridDim.x*blockDim.x];
tid+1*gridDim.x*blockDim.x];

tid+2*gridDim.x*blockDim.x];

u[tid+0*gridDim.x*blockDim.x] =A[0]*ut0 + A[1]*ut1 + A[
u[tid+1*gridDim.x*blockDim.x] =A[3]*ut0 + A[4]*ut1 + A[
u[tid+2*gridDim.x*blockDim.x] =A[6]*ut0 + A[7]*utl + A

Tonghua Su, School of Software, Harbin Institute of Technology, China

[*ut2;
[*ut2;
[*ut2;

(%7 CUDARHE EIATRF B

Local arrays

® In more complicated cases, it puts the array into device memory

® still referred to in the documentation as a “local array” because
each thread has its own private copy

® held in L1 cache by default, may never be transferred to device
memory

® 16kB of L1 cache equates to 4096 32-bit variables, which is only
4 per thread when using 1024 threads

® beyond this, it will have to spill to device memory

Tonghua Su, School of Software, Harbin Institute of Technology, China

@ CUDAR: # B AT R

® In a kernel, the prefix __shared_ as in
__shared Int X_dim;
__Shared float x[128];

® declares data to be shared between all of the threads in the thread
block — any thread can set its value, or read it.

@ There can be several benefits:

v" essential for operations requiring communication between threads (e.g.
summation in lecture 4)

v" useful for data re-use (I use it for unstructured grid applications)

v" alternative to local arrays in device memory reduces use of registers when a
variable has same value for all threads

Tonghua Su, School of Software, Harbin Institute of Technology, China

@ CUDARIHE RS ATRRE B

® |f a thread block has more than one warp, it’s not pre-determined when
each warp will execute its instructions —warp 1 could be many
Instructions ahead of warp 2, or well behind.

® Consequently, almost always need thread synchronisation to ensure
correct use of shared memory.

@® [nstruction
__syncthreads();

Inserts a “barrier”; no thread/warp is allowed to proceed beyond this point
until the rest have reached it (like a roll call on a school outing)

Tonghua Su, School of Software, Harbin Institute of Technology, China

(%0 CUDARHE EIATRF B

® So far, have discussed statically-allocated shared memory — the size is
known at compile-time

@® Can also create dynamic shared-memory arrays but this is more
complex

@® Total size is specified by an optional third argument when launching
the kernel:

kernel<<<blocks,threads,shared_bytes>>>(...)

Tonghua Su, School of Software, Harbin Institute of Technology, China

9

® Kepler has 64KB which is split 16/48, 32/32 or 48/16 between L1
cache and shared memory:

@® this split can be set by the programmer using
8lrjdaFuncSetCacheConfig
cudaDeviceSetCacheConfig

@® default is 48KB of shared memory if not set by
cudaDeviceSetCacheConfig

® might be good to switch to 16KB of shared memory if the kernel
doesn’t need much shared memory

Tonghua Su, School of Software, Harbin Institute of Technology, China

Q CUDABHEREFATR it

@® Finally, we have texture memory:
v" originally, intended primarily for pure graphics applications

v in Kepler K20, the texture cache is 48kB and can be used as a cache for read-only
global arrays which are accessed non-uniformly (i.e. different threads read

different elements)
v" need to declare global array with
const _ restrict__

qualifiers so that the compiler knows that it is read-only

Tonghua Su, School of Software, Harbin Institute of Technology, China

O

Variable declaration Memory Scope Lifetime

var; register thread thread
array var[10]; local thread thread
shared var; shared Dblock block
global_var; global grid application

constant_var; constant grid application

Variable declaration Memory Penalty
var; register 1x
array_var[10]; local 100x

shared var; shared 1x
global_var; global 100x

constant _var; constant 1x

@ CUDAR t B - AT IR

@® \What happens with the following code?

__kernel__ void lap(float *ul, float *u2) {
float a;

a = ulfthreadldx.x + blockldx.x*blockDim.x]

u2[threadldx.x + blockldx.x*blockDim.x] = a;

}

® [oad doesn’t block until needed: store doesn’t block unless, or until,
danger of modification

Tonghua Su, School of Software, Harbin Institute of Technology, China

@) CUDABHEREFATR it

@® Each block require certain resources:

v' threads
v" registers (registers per thread x number of threads)

v" shared memory (static + dynamic)

® Together these determine how many blocks can be run simultaneously
on each SMX — up to a maximum of 16 blocks

Tonghua Su, School of Software, Harbin Institute of Technology, China

O

@® general advice:

v number of active threads depends on number of registers each needs
v" good to have at least 4 active blocks, each with at least 128 threads
v" smaller number of blocks when each needs lots of shared memory

v" larger number of blocks when they don’t need shared memory
® On Kepler:

v maybe 4 big blocks (256 threads) if each needs a lot of shared memory
v maybe 8 small blocks (128 threads) if no shared memory needed
v or 4 small blocks (128 threads) if each thread needs lots of registers

® Very important to experiment with different block sizes to find what
gives the best performance.

® On Fermi:

v maybe 3 big blocks (256 threads) if each needs a lot of shared memory
v maybe 6 small blocks (128 threads) if no shared memory needed
v" or 4 small blocks (128 threads) if each thread needs lots of registers

Tonghua Su, School of Software, Harbin Institute of Technology, China

	Slide Number 1
	Outline
	Insights on Memory
	CPU Memory Hierarchy
	CPU Memory Hierarchy
	Cache
	Importance of Locality
	Kepler
	Kepler
	Fermi
	Fermi
	GPU Memory Hierarchy
	Importance of Locality
	Coalesced Transfer
	A bad kernel
	Variables-Global arrays
	Variables-Global variables
	Variables-Global variables
	Constant variables
	Constants
	Registers
	Registers
	Registers
	Registers
	Local arrays
	Local arrays
	Local arrays
	Shared memory
	Shared memory
	Shared memory
	Shared memory
	Texture memory
	Variables
	Non-blocking loads/stores
	Active blocks per SM
	Active blocks per SMX

